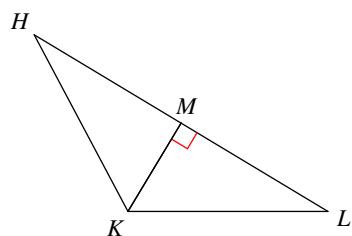
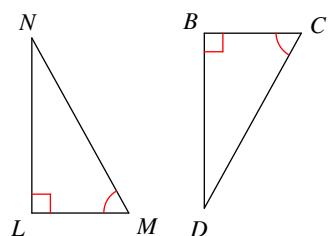

Right Triangle Congruence

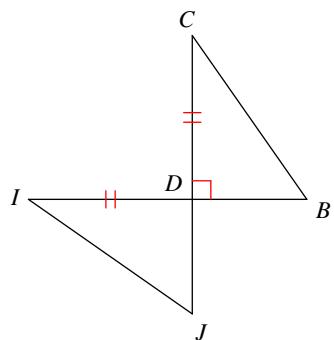
State if the two triangles are congruent. If they are, state how you know.

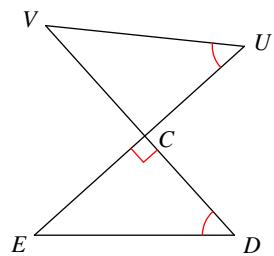


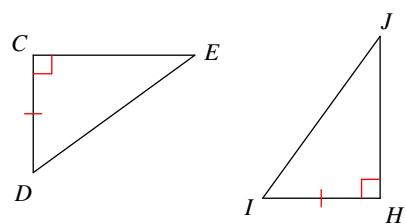
State what additional information is required in order to know that the triangles are congruent for the reason given.

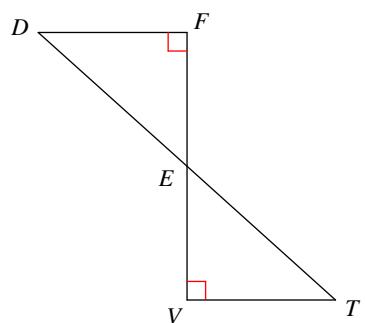

11) HL


12) LL

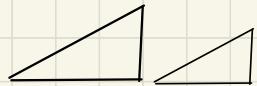

13) LL

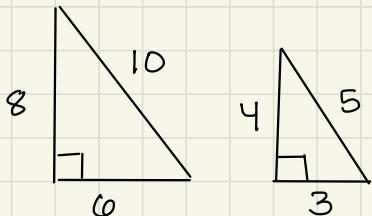

14) HA


15) LA


16) HA

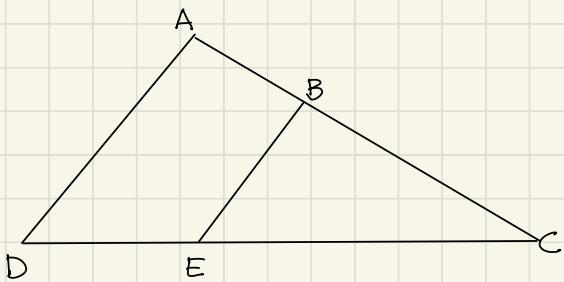
17) HL


18) LA


Ch. 27 - Proving Similar Triangles

SIMILAR (\sim) MEANS: _____

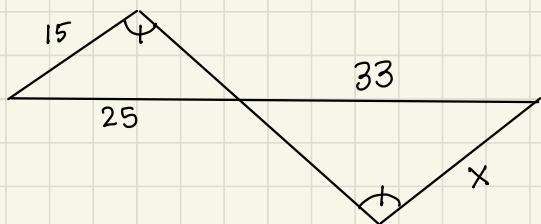
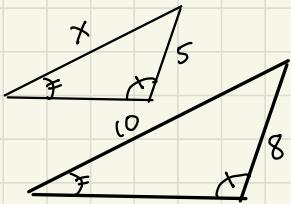
ALL ANGLES ARE _____



THE RATIO OF EACH SIDES
ARE _____

AREA Δ_1 = _____ AREA Δ_2 = _____

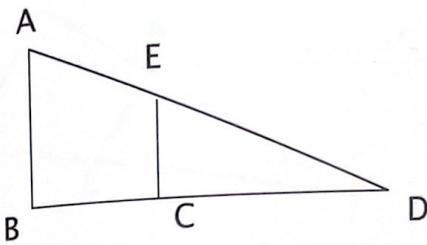
A.A - Postulate - If two angles of one triangle are congruent to 2 angles of another triangle, and **none** of their legs are congruent, then the two triangles are similar.



STATEMENTS REASONS

GIVEN: $\angle DAB \cong \angle EBC$

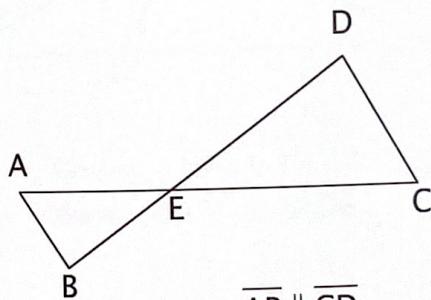
PROVE: $\triangle DAC \sim \triangle EBC$

LOOK FOR THE REFLEXIVE PROPERTY IN AA


USING CORRESPONDING PARTS OF
SIMILAR TRIANGLES ARE PROPORTIONAL.

LESSON PRACTICE

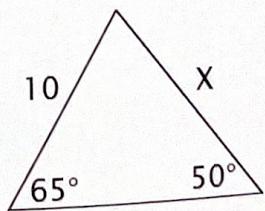
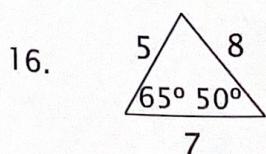
27A


Complete the following proofs using AA similarity.

Given: $\overline{AB} \perp \overline{BD}$
 $\overline{EC} \perp \overline{BD}$

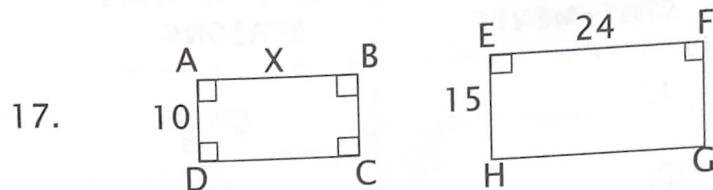
Prove: $\triangle ABD \sim \triangle ECD$

STATEMENTS	REASONS
1. _____	given
2. _____	given
3. _____ \cong _____	4. _____
5. _____ \cong _____	6. _____
7. _____ \sim _____	8. _____

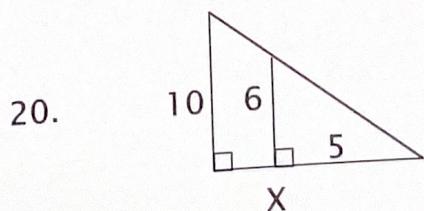
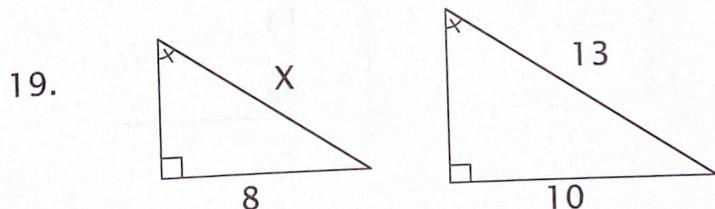
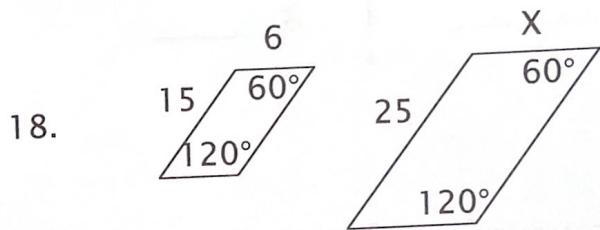



Given: $\overline{AB} \parallel \overline{CD}$

Prove: $\triangle ABE \sim \triangle CDE$


STATEMENTS	REASONS
9. _____	given
10. _____ \cong _____	11. _____
12. _____ \cong _____	13. _____
14. _____ \sim _____	15. _____

Find X using "corresponding parts of similar figures are proportional."

LESSON PRACTICE 27A

Find X using "corresponding parts of similar figures are proportional."

Rectangle ABCD is similar to rectangle EFGH.

X is total base of the larger triangle.

LESSON PRACTICE

Factor completely.

1. $x^4 - 9x^2 =$

2. $3x^3 - 75x =$

3. $4x^4 - 4x^2 =$

4. $5x^5 - 5x =$

5. $-2x^2 - 16x - 30 =$

6. $3x^3 + 9x^2 - 30x =$

7. $5x^3 - 5x^2 - 30x =$

8. $x^3 + 11x^2 + 30x =$

9. $-4X^2 - 28X - 40 =$

10. $-3X^3 - 24X^2 - 36X =$

11. $2X^3 - 8X^2 - 10X =$

12. $5X^5 - X^4 - 6X^3 =$

13. $-3X^3 - 12X^2 + 36X =$

14. $X^4 + 3X^3 - 4X^2 =$

15. $4X^3 - 36X =$

16. $2X^4 - 32X^2 =$

Find the factors.

1. $x^4 - 16$

2. Check #1 by substituting 10 for X.

3. $16x^2 - 9$

4. Check #3 by substituting 10 for X.

Find the missing factor.

5. $x + 2 \sqrt{3x^2 - 2x - 9}$

6. Check #5 by multiplication.

Build and find the product.

7. $(x - 3)(x - 4) =$

8. Check #7 by multiplying the binomials vertically.

Solve using oriental squares.

9. $75^2 =$

10.
$$\begin{array}{r} 41 \\ \times 49 \\ \hline \end{array}$$

11. Find the factors and check: $2X^2 + 4X + 2$.12. Find the factors and check: $6X^2 - 600$.

Solve for the unknown.

13. $\frac{3}{7} = \frac{6}{Q} = (Q \neq 0)$

14. $\frac{2}{9} = \frac{X}{36}$

15. $.015 = .25Q - .44$

16. $-4X - 16 = -5X + 43$

17. Express 49,703 with exponential notation.

18. Write as a decimal number: $1 \times 10^{-2} + 5 \times 10^{-4}$

19. Find three consecutive integers such that 12 times the second, plus 4 times the first, equals 9 times the third, plus 8.

20. $(2X + 3)(A + 4) = (2X)(\quad + \quad) + (3)(\quad + \quad) = (\quad + \quad) + (\quad + \quad)$

SYSTEMATIC REVIEW

Find the factors.

1. $x^3 - 9x$

2. Check #1 by substituting 10 for X.

3. $x^4 - 81$

4. Check #3 by substituting 10 for X.

Find the missing factor.

5. $x - 3 \overline{) 2x^2 - 7x - 8}$

6. Check #5 by multiplication.

Build and find the product.

7. $(x - 2)(x - 1) =$

8. Check #7 by multiplying the binomials vertically.

Solve using oriental squares.

9. $95^2 =$

10.
$$\begin{array}{r} 24 \\ \times 26 \\ \hline \end{array}$$

11. Find the factors and check: $5X^2 - 45$.12. Find the factors and check: $4X^2 - 324$

Solve for the unknown.

13. $\frac{4}{11} = \frac{P}{110}$

14. $\frac{5}{8} = \frac{C}{15}$

15. $-50BY + 30B = 80BY - 40B$ ($B \neq 0$) 16. $2.07 - .9X = 5X + .83$

17. Justin has fourteen coins consisting of quarters and dimes.
If the total value is \$2.30, how many of each kind does he have?

18. If a race car driver travels at 180 mph for 4.2 hours, what is his distance?

19. If the driver in #18 decreases his rate by 30 mph, how long would it take to travel the same distance?

20. $(\quad + \quad)(\quad + \quad) = (\quad)(\quad + \quad) + (\quad)(\quad + \quad) = (XC + XB) + (AC + AB)$