

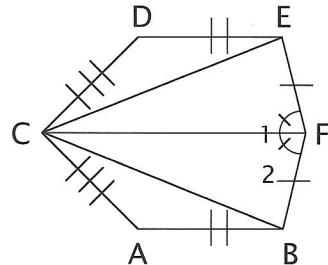
Honors Lesson 22

1. This bird is red.
2. $\angle A$ is congruent to $\angle B$.
3. I get 100% on my math test.
4. This triangle has two congruent sides.

Honors Lesson 23

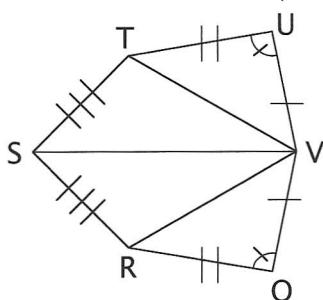
1. If I get burned, I touch the hot stove.
2. If two line segments are congruent, they have equal length.
True.
3. If a bird is red, it is a cardinal.
Not necessarily true.
4. If the leg squared plus the leg squared equals the hypotenuse squared, the triangle is a right triangle.
True.
5. If my plants wilt, I stop watering them.
Not true if I am sensible!

Honors Lesson 24

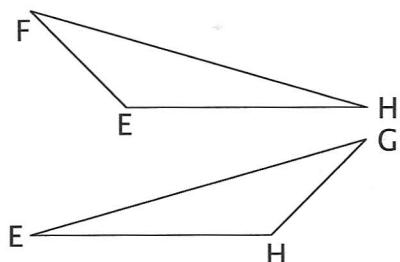

1. 50° ; the measure of an inscribed angle is half the measure of the intercepted arc.
2. 130° ; $180^\circ - 50^\circ$
3. 50° ; same reason as #1
4. 80° ; $180^\circ - (50^\circ + 50^\circ)$
5. 160° ; $360^\circ - (100^\circ + 100^\circ)$
6. 80° ; vertical angles
7. 85° ; $180^\circ - 95^\circ$
8. 15° ; $180^\circ - (80^\circ + 85^\circ)$
checking results with remote interior angles: $80^\circ + 15^\circ = 95^\circ$

9. 80° ; angle 1 and the 70° angle next to it put together form an angle that is the alternate interior angle to the 150° angle at the top left.
 $150^\circ - 70^\circ = 80^\circ$
10. 70° ; alternate interior angles
11. 30° ; $180^\circ - (70^\circ + 80^\circ)$
12. 30° ; alternate interior angles

Honors Lesson 25


1.

Statements	Reasons
$AF \cong EF$	Given
$\angle 1 \cong \angle 2$	Given
$CF \cong CF$	Reflexive
$\triangle CEF \cong \triangle CAF$	SAS
$\overline{CE} \cong \overline{CA}$	Corresponding parts of congruent triangles
$\triangle CDE \cong \triangle CBA$	SSS
$\angle CDE \cong \angle CBA$	Corresponding parts of congruent triangles


2.

Statements	Reasons
$\overline{TU} \cong \overline{RQ}$	Given
$\angle TUV \cong \angle RQV$	Given
$\overline{UV} \cong \overline{QV}$	Given
$\triangle TUV \cong \triangle RQV$	SAS
$\overline{TV} \cong \overline{RV}$	CPCTC
$\overline{ST} \cong \overline{SR}$	Given
$\overline{SV} \cong \overline{SV}$	Reflexive
$\triangle TSV \cong \triangle RSV$	SSS
$\angle TSV \cong \angle RSV$	CPCTC

3.

Statements	Reasons
$\overline{FE} \cong \overline{GH}$	Given
$\overline{FH} \cong \overline{GE}$	Given
$\overline{EH} \cong \overline{EH}$	Reflexive
$\triangle FEH \cong \triangle GHE$	SSS

Honors Lesson 26

1.

Statements	Reasons
$\overline{AB} \cong \overline{AC}$	Given
$\angle ARB \cong \angle AQC$	Perpendicular
$\angle BAR \cong \angle CAQ$	Reflexive
$\overline{BAR} \cong \overline{CAQ}$	AAS
$\overline{CQ} \cong \overline{BR}$	CPCTC

2.

Statements	Reasons
$\overline{XB} \cong \overline{YB}$	Definition of bisector
$\angle XBA \cong \angle YBA$	Definition of Perpendicular
$\overline{BA} \cong \overline{BA}$	Reflexive
$\overline{XBA} \cong \overline{YBA}$	SAS
$\overline{XA} \cong \overline{YA}$	CPCTC

3.

Statements	Reasons
$\overline{EF} \cong \overline{GF}$	From proof above
$\overline{EX} \cong \overline{GX}$	Definition of Bisector
$\overline{FX} \cong \overline{FX}$	Reflexive
$\overline{EFX} \cong \overline{GFX}$	SSS
$\angle EXH \cong \angle GXH$	Definition of Perpendicular
$\overline{HX} \cong \overline{HX}$	Reflexive
$\overline{EHX} \cong \overline{GHX}$	SAS
$\overline{EH} \cong \overline{GH}$	CPCTC

Honors Lesson 27

1.

Statements	Reasons
$\overline{XC} \cong \overline{YC}$	Radius of a circle
$\angle PYC \cong \angle PXC$	A tangent of a circle is perpendicular to the radius at that point.
$\overline{PC} \cong \overline{PC}$	Reflexive
$\triangle PYC \cong \triangle PXC$	HL
$\overline{PX} \cong \overline{PY}$	CPCTC